• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
Mechanic37

Mechanic37

इंजीनियरिंग और फिजिक्स,केमिस्ट्री

  • My account
  • Cart
  • Products
  • Blog
  • Contact Us
Home » DIY Footstep Power Generation Project For Engineering And Science

DIY Footstep Power Generation Project For Engineering And Science

May 7, 2025 by admin Leave a Comment

5
(1)

Footstep Power Generation Project Using Piezoelectric Sensors and Arduino

Footstep power generation components laid out on a gray background, including 8 piezoelectric sensors, Arduino Uno, 16x2 LCD display with I2C module, lithium-ion battery, TP4056 charging module, voltage sensor, AC to DC rectifier on a protoboard, and a 100µF electrolytic capacitor

Convert footsteps into electricity! In this project, we build a working model that generates electric power using Piezoelectric Sensors, displays the voltage on an LCD 16×2 with I2C, and stores energy in a Li-ion 18650 battery using a TP4056 charging module. Ideal for engineering students, science exhibitions, and DIY electronics lovers.

Components Used

Electronics for a footstep power project: Arduino Uno, LCD display, 8 piezo sensors, voltage sensor, TP4056 module, and 100µF capacitor displayed clearly on a neutral surface

• • MDF board base

• • 6 to 10 Piezoelectric Sensors

• • Rectifier circuit (4 diodes + 10µF capacitor)

• • Voltage Sensor Module

• • Arduino Uno

• • LCD 16×2 (with I2C module)

• • TP4056 Li-ion battery charging module

• • 18650 Li-ion battery

• • Push switch

• • Jumper wires, soldered board (5×7 cm)

Circuit Diagram Overview

– ✅ 1. Piezoelectric Sensors to Rectifier

  • Connect all 8 piezoelectric sensors in parallel (red wires together, black wires together).
  • Connect the combined output of piezo sensors to a full bridge rectifier (made from 4 diodes).
    • Piezo output → AC inputs of the bridge rectifier (marked ~ or AC)
    • Output of rectifier (+) → Positive terminal of 100µF capacitor
    • Output of rectifier (–) → Negative terminal of 100µF capacitor

✅ 2. TP4056 Output to Arduino Power

  • TP4056 OUT+ → Arduino VIN
  • TP4056 OUT– → Arduino GND

(This powers the Arduino using the battery charged by footsteps.)


✅ 3. Voltage Sensor Module to Arduino

  • Voltage Sensor VCC → Arduino 5V
  • Voltage Sensor GND → Arduino GND
  • Voltage Sensor Signal (S) → Arduino A0
  • Voltage sensor input pins connected across the capacitor to monitor voltage generated.

✅ 4. LCD 16×2 with I2C to Arduino

  • LCD SDA → Arduino A4
  • LCD SCL → Arduino A5
  • LCD VCC → Arduino 5V
  • LCD GND → Arduino GND

✅ 5. Additional Notes

Use thick wires for rectifier and piezo connections due to high-frequency spikes.

Switch (optional): You may add a switch between TP4056 OUT+ and Arduino VIN for manual power control.

Ensure Capacitor Polarity is Correct: 100µF electrolytic capacitor must have + to rectifier positive and – to rectifier ground.

Arduino Code for Voltage Monitoring and Display (mV)

#include <Wire.h>

#include <LiquidCrystal_I2C.h>

// Initialize LCD 16×2 (I2C Address: 0x27, Columns: 16, Rows: 2)

LiquidCrystal_I2C lcd(0x27, 16, 2);

const int voltageSensorPin = A0;  // Voltage sensor connected to A0

float voltage = 0.0;

int milliVoltage = 0;

void setup() {

    lcd.init();  // Initialize LCD

    lcd.backlight();  // Turn on LCD backlight

    lcd.setCursor(0, 0);

    lcd.print(“Footstep Power”);

    delay(2000);  // Display project name for 2 seconds

    lcd.clear();

    lcd.setCursor(0, 0);

    lcd.print(“Voltage: “);

    Serial.begin(9600);

}

void loop() {

    int sensorValue = analogRead(voltageSensorPin);

    // Convert sensor reading to millivolts (Voltage Divider Ratio = 5)

    voltage = (sensorValue * 5000.0) / 1023.0;  // Convert to mV

    milliVoltage = (int) voltage;  // Convert to integer for LCD display

    // Display voltage on Serial Monitor

    Serial.print(“Voltage: “);

    Serial.print(milliVoltage);

    Serial.println(” mV”);

    // Display voltage on LCD in mV

    lcd.setCursor(9, 0);

    lcd.print(”      “);  // Clear old value

    lcd.setCursor(9, 0);

    lcd.print(milliVoltage);

    lcd.print(“mV”);

    delay(500);  // Refresh every 500ms

}

Testing Video

Applications

• • Smart flooring in malls, railway stations

• • Energy harvesting for remote sensors

• • Educational science fair project

• • Concept for green energy research

Conclusion

This project showcases a renewable energy system that harnesses mechanical pressure from footsteps into usable electric power. With a voltage display and battery charging mechanism, it’s both functional and educational.

Tip: You can expand this project by connecting a boost converter and inverter to power a small AC bulb or USB devices.

Available on: Mechanic37.com, Flipkart, Amazon –

यह पेज आपको कैसा लगा ?

Average rating 5 / 5. Vote count: 1

Share this:

  • Click to share on WhatsApp (Opens in new window)
  • Click to share on Facebook (Opens in new window)
  • Click to print (Opens in new window)

Filed Under: Engineering Project, Mechanical Engineering, sensors

Reader Interactions

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Primary Sidebar

विषय

  • भौतिक विज्ञान
  • मैकेनिकल इंजीनियरिंग
  • इलेक्ट्रॉनिक्स इंजीनियरिंग
  • इलेक्ट्रिकल इंजीनियरिंग
  • रसायन विज्ञान
  • जीव विज्ञान 
  • कंप्यूटर 
  • इंजीनियरिंग प्रोजेक्ट्स

Footer

Social Media

  • Facebook
  • Twitter
  • Instagram
  • Youtube

Learn How To Make

  • Drone
  • DIY Robot
  • Website
  • Android Apps?

Policies

  • Shipping and Delivery
  • Refund and Cancellation Policy
  • Privacy Policy
  • Terms and Conditions

Shop

  • Shop
  • My account
  • Checkout
  • Cart

Mechanic37 2015 - 2024

  • Sitemap
  • Contact Us
  • About Us
  • Advertise
  • Mechanical Notes
  • Electrical Notes
  • Electronic Notes
  • Engineering Projects
  • Physics
  • Chemistry
  • Biology
  • Learn Computer
  • Autocad Tutorial